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The most general interaction of a collection of nuclear mag-
netic moments, invariant under the operations of the pure
rotation group in three dimensions, is shown to be a linear
combination of basic invariants that are multilinear in the
components of the nuclear spin vectors. For an even number of
spins each basic invariant is proportional to a product of scalar
products, whereas for an odd number of spins each basic in-
variant is proportional to a scalar triple product multiplied by
a product of scalar products. Representation theory for the
group of proper rotations is used to determine the exact number
of independent basic invariants for a given number of spins.
The implications of time-reversal invariance and the conse-

ported. Indeed, many characteristics of high-resolutio
spectra are consequences of rotational invariance, indepe
dent of the specific form of the interaction; and some chal
acteristics of particular spin systems persist even whe
multilinear interactions are included. For example, the ABC
system has the property that the spectrum may be divide
into three quartets whose spacings sum to the absolute val
of the sum of the bilinear coupling constants, and thit
property still holds when a terlinear interaction is included
since the latter makes no contribution to the diagonal ele
ments of #. It should not be concluded, however, that

quences of including multilinear interactions in the Hamilto-
nian are investigated. In particular, the high-resolution spec-
trum of the AA’XX’ system when quadrilinear interactions are
included is examined. © 1998 Academic Press

multilinear interactions are generally higher than first-ordel
for, as will be seen subsequently, quadrilinear interaction:
among others, contribute to the diagonal elements of tt
Hamiltonian matrix.

INTRODUCTION ROTATIONALLY INVARIANT INTERACTIONS

' I . Let —V denote the most general rotationally invariant inter:
The fine structure observed in high-resolution spectra has_ : :

o : . o action of the nuclear moments, and write, for brevity,
been traditionally interpreted in terms of transitions between

the energy levels of the Hamiltoniad7)

== oly;— 22yl [1]

<k

Z=2 ol 2]
i

In this notation, the Hamiltonian is

in which# has been taken as the unit of angular momentum, so
that the eigenvalues df, the w;, and theJ, are in angular

frequency units. J
The bilinear interactions—the second term36é—repre- The interaction ofN nuclear magnetic moments can be
sent the simplest, nontrivial rotationally invariant interacexPanded in terms of a complete set of orthonormal oper;
tions of the nuclear moments,(9). There are, however, t0rs, with the expansion coefficients subject to the cond
rotationally invarianimultilinear interactions, and the ques-tions thatv be Hermitian and rotationally invariant. This is
tion arises as to the necessity of including them in tRRPmMewhat analogous to the introduction of higher-orde
Hamiltonian. The magnitudes of coupling constants asso€RTeéction terms to the energy in other branches of spe
ated with multilinear interactions are undoubtedly smalldfoScopy, but the expansion here is exact and terminat
than those associated with bilinear interactions, but there &fer a finite number of terms.
instances where the magnitudes of bilinear coupling con-Any operator defined on the states of angular momentum «
stants are considerable, and in such cases multilinear cgusingle nucleus with spih may be expressed as a linear
pling constants could be appreciable. Furthermore, no sy&mbination of the operatord @)
tematic investigation as to the consequences of including
multilinear interactions in the Hamiltonian has been re-

% =—(Z+V). 3]

um = (=DN.Z0(1 = 1), [4]
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where and — signs, it will be convenient to use the symigwhich
[5] may be+ or —.
In the case of a composite systemMhuclei with spind ,,
l,, ..., Iy, Egs. [6] hold for the corresponding operators of
each spin vector; = (I, ly;, I,;), and also for those of the total

[lo, 1.]1=*1., [ly,1_]=2l,, [6] spin vector

satisfying

1is the (2 + 1)-dimensional identity operator, and tAg’ (11
*1g),n=0,1,2,...,2—-r,r=0,1,2,...,2, are I_Eli' (13]
polynomials of degreen in |, obtained from the following =1
(scalar) polynomial by replacing with 11 = |

since operators for distinct nuclei commute. Hencefdythl,

N+ 2r\ /2l +n+r + 1\ V2 I, =1y, 1., 1_referto operators associated with the total spit
Z(r) — . . . R
n (X) [( n )( N+ 2r + 1 )] vector|l; the corresponding operators for tfta spin will be
denotedl,;, Iy, 1,; = 17, 17, 1.
"(=D™' (4! (2l -1 — b An operator basis for the composite system is obtained k&
X ERCEY ( n—v ) forming thell;(2l; + 1)? Kronecker products:
v=0 '

n+2r +v\/x N
\'ner ) [7] [Tu, [14]
j=1

These polynomials satisfy the symmetry relation

whereg = + or —, and the Kronecker products are serially

Z0@21 =1 —x) = (—1)"Z"(x), [g] ordered. The degree of a product operator is
so that, whem = 0, the operators in Eq. [4] with the sign are N
related to those with the sign, and in this case only thé 2 d=2> (n+r1). [15]
1 operators with thet (or —) sign are to be taken. With this =1

restriction, Eq. [4] generates a complete, orthonormal basis

(10) of (2I + 1)? polynomial operators, whose overall degrees An arbitrary operator defined on the states of the com
inly I, |_ are given by the values of + r. In particular, the posite spin system may be expressed as a linear combir
(normalized) identity operaton(= r = 0) is of degree zero. tion of all possible products of the form [14]. The interac-
Whenr = 0, butn # 0, the operators are polynomialslig  tion operatolV must be Hermitian and rotationally invariant,

The U satisfy the following relations: so that
ue = Uty [9] Vi=v, [16]
[lo, U] = =ru®, [10] exd—i¢n-1Vexdion-1]1=V, [17]
(U, 1.]= =[n(n+ 2r + D]V2ULY,, [11]

wheren is an arbitrary unit vector along the axis of rota-
(UM 1.]==[(n+ 1)(n+ gr)]lfzug‘(ﬁ)l), [12] tion, and¢ is the angle of rotation. WritingR for the rota-
tion operator, expti¢n - 1], and R, for the rotation
Equations [10]-[12] show that tHé{) are explicit realizations XP[~i¢n - I;] on the subspace of spip a similarity
of the irreducible tensor operator§8‘), for the (3 + 1)- transformatlpn WIthR applied to a typical operator of the
dimensional representation of the 3-dimensional rotatigifoduct basis yields
group, withn + r =k, r = |q[.
In subscripty is alwaysa nonnegative integer, so thatr N N
does not meartr or —r, but merely distinguishes between the RITUMR™ =[] RUYR™. [18]
pair of operators with the- and— signs, both operators having j=1 =1
the same value of = 0; in other instances, Eq. [10], for
instance, the signs prefixed to the factor roin the right The transformation oA“BP, whereA andB refer to spirj, may
member are algebraic. To distinguish the operators withtthecarried out by means of the following rulé A“BBRJ-’1=
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(RjARj’l)"(Rj BRj’l)B. Now the operators for the individual their + and — components subjected to transformation [19]
spins are transformed into linear, homogeneous combinatiarel all such products will be transformed into themselves
of themselves under rotations. For example, under a rotatiprovided that

about thez-axis (11),

exd —idl Jllexdigl,] = (exd —idl ]l exdidl,])" > gr=0. [21]
j=1

exd —erio]lL. [19]

) ) Thus, in any product operator, the sum of the exponents of tt
Thus, any operator of the product basis of given degreeis operators must equal the sum of the exponents ofl the
transformed into a linear combination of products of thSperators. It follows that

same degree, so that we may consider separately the rota-
tional invariance of products having the same degree. The

(normalized) identity operators, I(2+ 1)1, on the sub- N

spaces of the individual spins do not contribute to the 2 r=2p, [22]
overall degree of an operator product for the composite =1

system.

The identity operator for the composite system is rotavheren is a nonnegative integer. From Egs. [15] and [22], we
tionally invariant and of degree zero, but as it would onljiave
add a constant to each eigenvalue of the Hamiltonian, it will
be omitted. Operators of degree 1 are not rotationally in- "
variant and, moreover, do not represent interactions. Inter- Shn-d-2 23
actions of degree 2, as we shall see subsequently, corre- : M= K [23]
spond to bilinear interactions, but for the construction of =
these and higher-order interactions, considerations of a gen-
eral nature are necessary. Specifically, we examine tH@ that the parity of the sum of the is odd or even witfd.
rotational invariance o¥ under infinitesimal rotations about Now consider a product operator of degetor which not

the coordinate axes. all r; are zero, and let its coefficient e There is always
For an infinitesimal rotatioe, with n taken successively asanother operator of the same degree in whichlthend I~
i,j, k, Eq. [17] requires that operators are interchanged; let the coefficient of this operat

be ¢’. Invariance under a rotation of 180° about thexis
IV, L] = [V, 1,] =V, 1,] = 0. [20] requires that
Conversely, ifV commutes with each component of the total I
spin vector, it commutes with their positive integral powers
and, therefore, with the rotation operafrNow, it is easily so that the first product operator is transformed into the secor
shown that, ifV commutes withA andB, it also commutes and vice versa, with a change of sign or not, according, b
with [A, B], so that ifV commutes with any two off, I, I, virtue of Egs. [4] and [23], ad is odd or even. The condition
it will also commute with the third. We shall first determineof rotational invariance requires that= —c’ whend is odd,
those linear combinations of Kronecker products of a giveaut c = ¢’, whend is even. Furthermore, as the Hermitian
degree that are invariant under rotations aboutzthgis and conjugate 0A®B®C® - --isAT®B'®C'® - - -, Eq. [16]
are also Hermitian. The further requirement that they comequires that wheud is even, the product operators for which
mute withl, ensures their rotational invariance, for if theseot all r; are zero are grouped into sums of conjugate pair
linear combinations commute with_, then, being Hermi- multiplied by a single, real coefficient, whereas witkis odd,
tian, they necessarily commute with and, therefore, with such products are grouped into differences of conjugate pai
I, andl,. multiplied by a single, pure imaginary coefficient. The sam
Consider then a linear combination of all product operatoe®nclusions hold in the case of product operators for which a
of a given degreel. Under a rotation about theaxis, this r; are zero, but when, in this cagkis odd, the coefficient of a
combination will be subjected to a similarity transformatioproduct consisting entirely af-components must vanish, by
with exp[—idl,], and any product operator with ajl = 0 will  virtue of invariance under transformation [24]. This discussiol
be transformed into itself, as shown by Eq. [19]. On the othafso shows that there is always an odd number of produ
hand, any product operators for which notrl= O will have operators of a given degree.

élji, Ijﬁélr, Ijoé_ljo, [24]
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MULTILINEARITY OF THE INTERACTIONS rotationally invariant, but do not represent interactions. (3
It may happen in particular instances that the components
In any product operator, all operators other than normalertain angular momenta are quenched, and would thus r
ized identity operators are of the first degree in the angulappear as factors in product operators. Such cases can o
momentum operators. For in any product, there willNoe-  be considered as they arise, as particular details cannot
d normalized identity operators, and for these operatprs  anticipated in a general argument.
r, = 0, so that the summation in Eq. [15] actually extends
only over the values ofyy andr; of thosed operators other
than normalized identity operators. If we suppose the that BASIC INVARIANTS OF LOW DEGREE

latter are the firstl operators in each product, it follows that
We now work out the form of the interactions for severa
cases, supposing thidt= d. WhenN = d = 2, say spins 1 and
2, the interaction has the form,[(+—) + (—+)] + b;5(00),
> (nj+ ;) =d. [25]  since the coefficients of the first two operators must be equz
=t by the symmetry property mentioned previously. Setting th
commutator with, = I + |5 equal to zero, we find that, ,
But for the operators under consideration,+ r; = 1, so = b, = J;,, so thatV, in this case, is the familiar bilinear
that Eq. [25] requires, + r; = 1, forallj = 1, 2, ...,d. interactionJ;,l, - I,.
Consequently, eithem, = 1 andr; = 0, orn, = 0 andrj = ForN =d = 3, say spins 1, 2, and 3, the interaction must b
1. Thus, the only operators that appear as factors ino&the form
Kronecker product are, except for normalization factors, the
operatord Jo, IJ*, I:7, and identity operators for the individual
spins. Hence, the interactions araultilinear in the angular al(+-0) = (=+0)] + b[(+0-) = (=0+)]
momentum components of the nuclei. The degdegives + c[(0+—) — (0—+)].
the order of the interaction: bilinead = 2), terlinear ¢ =
3), quadrilinear ¢ = 4), etc. For brevity, normalization
factors will be omitted, since the product operators retaip€tting the commutator with, equal to zero, we find that =
their linear independence and orthogonality irrespective ofo = ¢, so there is only one independent constant, which mu
these factors. We shall also use an abbreviated notation g pure imaginary for the interaction to be Hermitian. It fol-
ordered product operators, writing O;, — for spin j, lows that
according as the operator in tlg place |sIo I+ orlj,
omitting all identity operators, and enclosmg the product in

parentheses. For example, wher= 3, (+ — 0) denotes the V = 2idpg (+-0) = (—+0) + (—0+)
Kronecker product; ® I, ® 13. The number of product
operators of given degre® containingn, factorsl,, n_ = — (+0-) + (0+—-) — (0—+)]
n, factorsl_, andny = d — 2n, factorsl, is
" ° N © RUTE PRl PR Y [27]
N!
n(N,d, n,) = (d = 2n)I(N = d)I(n.1)2" [26] whereJ,,;is real. It will be observed that this interaction does

not contribute to the diagonal elementsdf confirming the
remarks made in the introduction regarding the properties ¢
wheren, = 0,1, 2,...,d2ord — 1)/2, according asl is the ABC system.
evenorodd. FON =d = 2,3,4,5,6, Eq. [26]yields 3, 7,19, wWhenN = d = 4, similar calculations show that there are

51, 141, respectively. three independent interactions:
The preceding discussion leads to the following conclu-

sions: (1) The form of theV is independent of the spin

guantum numberq as the relations among the coefficients 131234{(+ —00) + (00+—) + (00—+) + (—+00)

in the expansion foV are determined by the commutation

relations alone. (2) The procedure outlined determines all F U+ =4+ (—++—) + (—+—+)
rotationally invariant interactions, not all rotational invari- 2

ants, the former being a subset of the latter. For instance, the + (+——+) + 4(0000]}

identity operator, and the Kronecker prodtﬂ;t?, which is

not, in general, a multiple of the identity operator, are = Jiza(l1-12)(I5+14), [28]
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%J1324{(+0_0) +(0+0—) + (0—0+) + (—0+0) therefore belong to the totally symmetric representaﬁ@rmf
the octahedral group, that is, each invariant spans a on
+ %[(++__) F(—tt—) + (——++) dimensional subspace_.
The 24 proper rotations of the octahedral group belong t
+ (+——+) + 4(0000]} five classesE, 8C;, 3C,, 6C,, 6C;. The character table for the
group is not required, as the characters for Ajgepresenta-
= Juaadll 1 1a) 12+ 1), [29] tion are all+1. The characters of the representation generate
1 by the 3 product operators arg(E) = 3V, x(Cs) = 0, x(C,)
291426l (1007) + (0+=0) + (0=+0) + (=00+) =1, for allN, x(C,) = x(Cb) = 1, forN even,—31, for N odd.
n %[(++__) () 4 (——+ 1) With these r_esults, astrgightforward calculation shows_that th
number of linear combinations of products transforming ac
+ (—+—+) + 4(0000]} cording to the representatioly, of the octahedral group for
several values oN is given in the following tabulation:
= Juza(l1- 1) 2+ 13), [30]
N 3N o] o
where theJ's are real constants. Other invariant interactions : : 1 1
with four spins are expressible in terms of [28], [29], and [30]. 3 27 1 1
For example); - [I; X (I3 X 1)] = (I - 13)(I2+ 1) — (I3~ 4 81 4 3
I,)(I, - I3). Quadrilinear interactions contribute to the diagonal 5 243 10 6
elements of¥# by virtue of the product operator (0000). For 6 729 31 15
spin% nuclei, this product would multiply each coupling con- ; gégz zgi 2613
stant by a factor ofl%, which could lead to a considerable 9 19,683 820 232
reduction in the contribution of a quadrilinear interactionto the 10 59,049 2,461 603
energy.
We can also reduce the product representation relative to t
REDUCTION RELATIVE TO O AND OF three-dimensional pure rotation groupg, whose irreducible

representations afg;, with j = 0, 1, 2, ... ,each of dimension
Although the preceding considerations, in principle, perm$§ + 1. Since the components of angular momenta transform lik
the determination of all rotationally invariant interactions, theectors, the products under consideration form a bas3f& D,
algebra becomes increasingly arduous for larger valueg$. of® D; ® - - - to N factors. Reducing this product into its irreducible
The important conclusion that the interactions are multilineabmponents, using the Clebsch—-Gordan series, we determine
in the angular momentum components may be combined witbmber of times the one-dimensional representaiigrs con-
group theoretical considerations to provide further informatiaained in the product for eadd. These numbers are given in the
regarding the formal aspects of the problem, and consideralzst column of the preceding tabulation.
simplification in the computations. In particular, we shall be To illustrate the calculation, consider the ca¢e= d = 4.
able to determine thexactnumber of independent invariantsOn applying the projection operator for tAg representation of
for eachN. O to the 81 product operators, the following linear combina
We begin by abandoning the expression of the invariantstions of products transforming according to therepresenta-
terms of the+, —, 0 operators in favor of their expression inion are obtained:
terms of the Cartesian components of the angular momenta. It
is also convenient to adqpt a concise notation for the products (xxxxX) + (Yyyy) + (zzz2, [31]
of angular momenta, writing, for example, whiin= d = 5,
(xxyz3 for the Kronecker produdtl,olysl4lys. In general, (XYY + (yyz2 + (zzx¥ + (xxz2 + (zzyy + (yyz2,  [32]
there are ¥ such products, all of which are Herm|tlan. We (xyxy) + (yzy2 + (zx2% + (x2x2 + (yxyX) + (zy2y, [33]
shall first adapt these products to the symmetries of the proper
rotations of the octahedral gro@ supposing the origin at the (XYy¥ + (yzzy + (zxx2 + (xzzX + (yxxy) + (zyy2.  [34]
center of a cube, with the coordinate axes parallel its sides.
Under any rotation, the components of angular momenta transtnder reduction with respect ©; , however, there are only
form like vectors, and under the particular rotations of 12@hree invariants. The reason is that reduction relativ@ tioes
and 240° about the cube diagonal extending from the origin not take into accourdll proper rotations. This means that after
the vertex in the positive octant, tlxey, andz-components of expressingV as a linear combination of the preceding four
the angular momenta undergo cyclical permutations, so thaperators, we must evaluate additional commutators with,
for any N, the invariants also have this property, and mustost, two ofl, I,, I, It turns out that only the commutator with
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I, is required, and on setting the result equal to zero, it is found TABLE 2
the coefficient of [31] is equal to the sum of the coefficients of Resonance Frequencies and Relative Intensities
[32]—[34], leading to the three scalar products given in Egs. for the AA’XX" System: B Transitions

[28]-[30]. It might be possible to avoid the evaluation of

additional commutators by reducing the products relative to the Frequency Intentity

proper rotations of the icosahedral group, but rotations about L . - 2
fivefold axes, which mix the components of angular momenth, @A T K- 7 daxan T daxand R 1+ Q?
would complicate the calculations. 2Q?
. : NI 2 wa K = Yaarx T daxa) IR —
WhenN = d = 5, the reduction with respect @; gives six = ™ 27— goaxax & saxeaxs 1; 1+ Q?
as the number of independent invariants, and an explicit cal- 2Q?
. . . - U3 wp — KL+ Yaxarx + daxan) — R —
culation disclose¥ as a linear combination of the following™ ™ 277 = g™AXAX = “aXAX 1+Q?

independent invariantst (- 1,)(I5- 1, X Ig), (I, 13)(I5 1,4 X 4 on — K+ ) )+ IR 2
ls), (lp - 1)z 13 X 1g), (I Ie)(lo-1g X 1), (I Mg)(Iy -1, 77 27 &oane - 7aem s 1+Q”
X lg), (I - 1)1+ 13 X 1g).
ForN = d = 6, similar calculations lead to 15 independent
invariants, as required under reduction relative to the pupeovided the coupling constants associated with these invarias
rotation group; all of these invariants can be expressed ae true scalars. Experimental evidence indicates that it is n
products of scalar products, such &g (1,)(I5* 1)(I5 - 1g)- necessary to include terlinear interactions in systems containi
The preceding results parallel the theory of invariants undéaree or more spins, so that experimental investigations of muli
the n-dimensional orthogonal group: every invariant of evelinear interactions should begin with four-spin systems, an
degree is expressible as a product of scalar products; evanyong these, the simplest would be the’BB’ system, espe-
invariant of odd degree is expressible as a scalar triple produtlly the limiting AA’XX’ system, as the frequency separation:
multiplied by scalar productslp). of the resonances in the Adand XX regions are determined
entirely by the coupling constants.

TIME-REVERSAL INVARIANCE
THE AA'XX’" SYSTEM

Invariance with respect to time reversal leads to a reduction in
the number of coupling constants required in the high-resolutionThe spectrum of the AAregion of the AXXX' system C,
Hamiltonian for a multispin system. For under time reversaymmetry) when quadrilinear interactions are included is give
(13, 19, the components of angular momentum change sign, andTables 1 and 2, where
the constant external magnetic field has its direction reversed.
Assuming the Hamiltonian [3] is invariant under time reversal, the K. = Jaa + Jyx:, L = Jax * Jax,
invariants of odd degree must be omitted from the Hamiltonian— .
R=[(K; = 3Jaanx + L2)2]2, R =[K2 + L2]¥2,

TABLE 1 L_
Resonance Frequencies and Relative Intensities Q= - K. —13 IR’
for the AA’XX' System: s Transitions T2vAARX
Frequency Intensity Q’ - _ L
K_o+R

N §L+ + %(‘]AXA'X’ + Jaxax) 2
2. 0a + 3L = Haxax: + Jaxax) 2 The spectrum reduces to the conv_entional "KR’ system
3 wn — 1 — X + Joas) 2 3, 6 15 when all quadrilinear coupling constants vanish. Ir

i j particular, the first and secondl transitions coalesce, as do the
4 oa = gk laax + Jaxa) 2 third and fourths{ transitions. As the predicted splitting of
5. wn — 5K, + X200 + Janane + Jngan) IR 2 _ these lines has not been reported, it may be concluded that

2 s 2 1+ ? known AA’XX' spectra eitherdya x: + Jax:ax)/4 is neg-
6. 0 — K, + 2X20aanoc + I + Jncand — R ﬂz ligibly small, or thatJaxa x- and Jax-a-x are comparable in

Z f z 1+ ? magnitude but of opposite sign. If we sBa x + Jax:a'x
7. 00 + K, = X20ammx + Jaxanc + Jaxa) + R 2Q _equal to zero in Tables 1 and 2, we see that the spectrum

2f : 1+ Q" formally the same as the conventional A&’ system, except

) y _ 4 ySte -Xcep

8. wa + 3K, — 22Jaancx T Iaxax: T Jaxax) — 3R 1o that K, is replaced withK, — ZJaa'xx'. From this point of

view, the customary interpretations of ARX' systems have
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