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The most general interaction of a collection of nuclear mag-
netic moments, invariant under the operations of the pure
rotation group in three dimensions, is shown to be a linear
combination of basic invariants that are multilinear in the
components of the nuclear spin vectors. For an even number of
spins each basic invariant is proportional to a product of scalar
products, whereas for an odd number of spins each basic in-
variant is proportional to a scalar triple product multiplied by
a product of scalar products. Representation theory for the
group of proper rotations is used to determine the exact number
of independent basic invariants for a given number of spins.
The implications of time-reversal invariance and the conse-
quences of including multilinear interactions in the Hamilto-
nian are investigated. In particular, the high-resolution spec-
trum of the AA*XX* system when quadrilinear interactions are
included is examined. © 1998 Academic Press

INTRODUCTION

The fine structure observed in high-resolution spectra has
been traditionally interpreted in terms of transitions between
the energy levels of the Hamiltonian (1–7)

* 5 2O
j

v j I zj 2 OO
j,k

Jjk I j z I k, [1]

in which\ has been taken as the unit of angular momentum, so
that the eigenvalues of*, the vj, and theJjk are in angular
frequency units.

The bilinear interactions—the second term of*—repre-
sent the simplest, nontrivial rotationally invariant interac-
tions of the nuclear moments (8, 9). There are, however,
rotationally invariantmultilinear interactions, and the ques-
tion arises as to the necessity of including them in the
Hamiltonian. The magnitudes of coupling constants associ-
ated with multilinear interactions are undoubtedly smaller
than those associated with bilinear interactions, but there are
instances where the magnitudes of bilinear coupling con-
stants are considerable, and in such cases multilinear cou-
pling constants could be appreciable. Furthermore, no sys-
tematic investigation as to the consequences of including
multilinear interactions in the Hamiltonian has been re-

ported. Indeed, many characteristics of high-resolution
spectra are consequences of rotational invariance, indepen-
dent of the specific form of the interaction; and some char-
acteristics of particular spin systems persist even when
multilinear interactions are included. For example, the ABC
system has the property that the spectrum may be divided
into three quartets whose spacings sum to the absolute value
of the sum of the bilinear coupling constants, and this
property still holds when a terlinear interaction is included,
since the latter makes no contribution to the diagonal ele-
ments of *. It should not be concluded, however, that
multilinear interactions are generally higher than first-order,
for, as will be seen subsequently, quadrilinear interactions,
among others, contribute to the diagonal elements of the
Hamiltonian matrix.

ROTATIONALLY INVARIANT INTERACTIONS

Let 2V denote the most general rotationally invariant inter-
action of the nuclear moments, and write, for brevity,

Z 5 O
j

v j I zj. [2]

In this notation, the Hamiltonian is

* 5 2~Z 1 V! . [3]

The interaction ofN nuclear magnetic moments can be
expanded in terms of a complete set of orthonormal opera-
tors, with the expansion coefficients subject to the condi-
tions thatV be Hermitian and rotationally invariant. This is
somewhat analogous to the introduction of higher-order
correction terms to the energy in other branches of spec-
troscopy, but the expansion here is exact and terminates
after a finite number of terms.

Any operator defined on the states of angular momentum of
a single nucleus with spinI may be expressed as a linear
combination of the operators (10)

U6r
~n! 5 ~61!nI6

r Zn
~r ! ~I1 6 I 0! , [4]
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where

I6 5 I x 6 iI y, I 0 5 I z, [5]

satisfying

@I 0, I6# 5 6I6 , @I1 , I2# 5 2I 0, [6]

1 is the (2I 1 1)-dimensional identity operator, and theZn
(r ) (I1

6 I0), n 5 0, 1, 2, . . . , 2I 2 r , r 5 0, 1, 2, . . . , 2I , are
polynomials of degreen in I0, obtained from the following
(scalar) polynomial by replacingx with I1 6 I0:

Zn
~r ! ~ x! 5 FS2n 1 2r

n DS2I 1 n 1 r 1 1
2n 1 2r 1 1 DG21/ 2

3 O
n50

n ~21!n1n ~n 1 r !!

~n 1 2r !! S2I 2 r 2 n
n 2 n D

3 Sn 1 2r 1 n
n 1 r DSx

nD . [7]

These polynomials satisfy the symmetry relation

Zn
~r ! ~2I 2 r 2 x! 5 ~21!nZn

~r ! ~ x! , [8]

so that, whenr 5 0, the operators in Eq. [4] with the1 sign are
related to those with the2 sign, and in this case only the 2I 1
1 operators with the1 (or 2) sign are to be taken. With this
restriction, Eq. [4] generates a complete, orthonormal basis
(10) of (2I 1 1)2 polynomial operators, whose overall degrees
in I0, I1, I2 are given by the values ofn 1 r. In particular, the
(normalized) identity operator (n 5 r 5 0) is of degree zero.
When r 5 0, butn Þ 0, the operators are polynomials inI0.

The U6r
(n) satisfy the following relations:

U6r
~n!† 5 U7r

~n! , [9]

@I 0, U6r
~n! # 5 6rU6r

~n! , [10]

@U6r
~n! , I6# 5 6@n~n 1 2r 1 1!#1/ 2U6~r11!

~n21! , [11]

@U6r
~n! , I7# 5 6@~n 1 1!~n 1 2r !#1/ 2U6~r21!

~n11! . [12]

Equations [10]–[12] show that theU6r
(n) are explicit realizations

of the irreducible tensor operators,Tq
(k), for the (2I 1 1)-

dimensional representation of the 3-dimensional rotation
group, withn 1 r 5 k, r 5 |q|.

In subscriptsr is alwaysa nonnegative integer, so that6r
does not mean1r or 2r, but merely distinguishes between the
pair of operators with the1 and2 signs, both operators having
the same value ofr $ 0; in other instances, Eq. [10], for
instance, the signs prefixed to the factor ofr in the right
member are algebraic. To distinguish the operators with the1

and2 signs, it will be convenient to use the symbole, which
may be1 or 2.

In the case of a composite system ofN nuclei with spinsI1,
I2, . . . , IN, Eqs. [6] hold for the corresponding operators of
each spin vectorI j 5 (Ixj, Iyj, Izj), and also for those of the total
spin vector

I 5 O
j51

N

I j , [13]

since operators for distinct nuclei commute. Henceforth,I x , I y ,
I z 5 I0, I1 , I2 refer to operators associated with the total spin
vector I ; the corresponding operators for thejth spin will be
denotedI xj , I yj , I zj 5 I j

0, I j
1 , I j

2 .
An operator basis for the composite system is obtained by

forming the)j(2Ij 1 1)2 Kronecker products:

P
j51

N

Uejrj

~nj ! , [14]

whereej 5 1 or 2, and the Kronecker products are serially
ordered. The degree of a product operator is

d 5 O
j51

N

~nj 1 r j ! . [15]

An arbitrary operator defined on the states of the com-
posite spin system may be expressed as a linear combina-
tion of all possible products of the form [14]. The interac-
tion operatorV must be Hermitian and rotationally invariant,
so that

V† 5 V , [16]

exp@2ifn ? I #V exp@ifn ? I # 5 V , [17]

wheren is an arbitrary unit vector along the axis of rota-
tion, andf is the angle of rotation. WritingR for the rota-
tion operator, exp[2ifn z I ], and Rj for the rotation
exp[2ifn z I j] on the subspace of spinj, a similarity
transformation withR applied to a typical operator of the
product basis yields

R~P
j51

N

Uejrj

~nj ! ! R21 5 P
j51

N

RjUejrj

~nj !Rj
21. [18]

The transformation ofAaBb, whereA andB refer to spinj, may
carried out by means of the following rule:Rj A

aBbRj
215
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(Rj ARj
21)a (Rj BRj

21)b . Now the operators for the individual
spins are transformed into linear, homogeneous combinations
of themselves under rotations. For example, under a rotation
about thez-axis (11),

exp@2ifI z#I ej

rj exp@ifI z# 5 ~exp@2ifI zj#I ej
exp@ifI zj#!

rj

5 exp@2e jr jf #I ej

rj . [19]

Thus, any operator of the product basis of given degree is
transformed into a linear combination of products of the
same degree, so that we may consider separately the rota-
tional invariance of products having the same degree. The
(normalized) identity operators, (2I j 1 1)21/21j, on the sub-
spaces of the individual spins do not contribute to the
overall degree of an operator product for the composite
system.

The identity operator for the composite system is rota-
tionally invariant and of degree zero, but as it would only
add a constant to each eigenvalue of the Hamiltonian, it will
be omitted. Operators of degree 1 are not rotationally in-
variant and, moreover, do not represent interactions. Inter-
actions of degree 2, as we shall see subsequently, corre-
spond to bilinear interactions, but for the construction of
these and higher-order interactions, considerations of a gen-
eral nature are necessary. Specifically, we examine the
rotational invariance ofV under infinitesimal rotations about
the coordinate axes.

For an infinitesimal rotationdf, with n taken successively as
i, j , k, Eq. [17] requires that

@V, I x# 5 @V, I y# 5 @V, I z# 5 0 . [20]

Conversely, ifV commutes with each component of the total
spin vector, it commutes with their positive integral powers
and, therefore, with the rotation operatorR. Now, it is easily
shown that, ifV commutes withA andB, it also commutes
with [A, B], so that ifV commutes with any two ofIx, Iy, Iz,
it will also commute with the third. We shall first determine
those linear combinations of Kronecker products of a given
degree that are invariant under rotations about thez-axis and
are also Hermitian. The further requirement that they com-
mute withI1 ensures their rotational invariance, for if these
linear combinations commute withI1, then, being Hermi-
tian, they necessarily commute withI2 and, therefore, with
Ix and Iy.

Consider then a linear combination of all product operators
of a given degreed. Under a rotation about thez-axis, this
combination will be subjected to a similarity transformation
with exp[2ifIz], and any product operator with allrj 5 0 will
be transformed into itself, as shown by Eq. [19]. On the other
hand, any product operators for which not allrj 5 0 will have

their 1 and 2 components subjected to transformation [19],
and all such products will be transformed into themselves,
provided that

O
j51

N

e jr j 5 0 . [21]

Thus, in any product operator, the sum of the exponents of the
I1 operators must equal the sum of the exponents of theI2

operators. It follows that

O
j51

N

r j 5 2m , [22]

wherem is a nonnegative integer. From Eqs. [15] and [22], we
have

O
j51

N

nj 5 d 2 2m , [23]

so that the parity of the sum of thenj is odd or even withd.
Now consider a product operator of degreed for which not

all rj are zero, and let its coefficient bec. There is always
another operator of the same degree in which theI1 and I2

operators are interchanged; let the coefficient of this operator
be c9. Invariance under a rotation of 180° about thex-axis
requires that

I j
13 I j

2 , I j
23 I j

1 , I j
03 2I j

0, [24]

so that the first product operator is transformed into the second,
and vice versa, with a change of sign or not, according, by
virtue of Eqs. [4] and [23], asd is odd or even. The condition
of rotational invariance requires thatc 5 2c9 whend is odd,
but c 5 c9, when d is even. Furthermore, as the Hermitian
conjugate ofAV BV CV . . . is A† V B† V C† V . . . , Eq. [16]
requires that whend is even, the product operators for which
not all rj are zero are grouped into sums of conjugate pairs,
multiplied by a single, real coefficient, whereas whend is odd,
such products are grouped into differences of conjugate pairs,
multiplied by a single, pure imaginary coefficient. The same
conclusions hold in the case of product operators for which all
rj are zero, but when, in this case,d is odd, the coefficient of a
product consisting entirely ofz-components must vanish, by
virtue of invariance under transformation [24]. This discussion
also shows that there is always an odd number of product
operators of a given degree.
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MULTILINEARITY OF THE INTERACTIONS

In any product operator, all operators other than normal-
ized identity operators are of the first degree in the angular
momentum operators. For in any product, there will beN 2
d normalized identity operators, and for these operatorsnj 5
r j 5 0, so that the summation in Eq. [15] actually extends
only over the values ofnj and r j of thosed operators other
than normalized identity operators. If we suppose the that
latter are the firstd operators in each product, it follows that

O
j51

d

~nj 1 r j ! 5 d . [25]

But for the operators under consideration,nj 1 r j $ 1, so
that Eq. [25] requiresnj 1 r j 5 1, for all j 5 1, 2, . . . ,d.
Consequently, eithernj 5 1 andr j 5 0, or nj 5 0 andr j 5
1. Thus, the only operators that appear as factors in a
Kronecker product are, except for normalization factors, the
operatorsI j

0, I j
1, Ij

2, and identity operators for the individual
spins. Hence, the interactions aremultilinear in the angular
momentum components of the nuclei. The degreed gives
the order of the interaction: bilinear (d 5 2), terlinear (d 5
3), quadrilinear (d 5 4), etc. For brevity, normalization
factors will be omitted, since the product operators retain
their linear independence and orthogonality irrespective of
these factors. We shall also use an abbreviated notation for
ordered product operators, writing 0,1, 2 for spin j,
according as the operator in thejth place isI j

0, I j
1, or I j

2,
omitting all identity operators, and enclosing the product in
parentheses. For example, whenN 5 3, (12 0) denotes the
Kronecker productI1

1 V I2
2 V I 3

0. The number of product
operators of given degreed, containingn1 factorsI1, n2 5
n1 factors I2, andn0 5 d 2 2n1 factors I0 is

h ~N, d, n1! 5
N!

~d 2 2n1!! ~N 2 d!! ~n1! !2 , [26]

wheren1 5 0, 1, 2, . . . ,d/2 or (d 2 1)/2, according asd is
even or odd. ForN 5 d 5 2, 3, 4, 5, 6, Eq. [26] yields 3, 7, 19,
51, 141, respectively.

The preceding discussion leads to the following conclu-
sions: (1) The form of theV is independent of the spin
quantum numbersI j, as the relations among the coefficients
in the expansion forV are determined by the commutation
relations alone. (2) The procedure outlined determines all
rotationally invariant interactions, not all rotational invari-
ants, the former being a subset of the latter. For instance, the
identity operator, and the Kronecker product)jI j

2, which is
not, in general, a multiple of the identity operator, are

rotationally invariant, but do not represent interactions. (3)
It may happen in particular instances that the components of
certain angular momenta are quenched, and would thus not
appear as factors in product operators. Such cases can only
be considered as they arise, as particular details cannot be
anticipated in a general argument.

BASIC INVARIANTS OF LOW DEGREE

We now work out the form of the interactions for several
cases, supposing thatN 5 d. WhenN 5 d 5 2, say spins 1 and
2, the interaction has the forma12[(12) 1 (21)] 1 b12(00),
since the coefficients of the first two operators must be equal,
by the symmetry property mentioned previously. Setting the
commutator withI1 5 I1

1 1 I2
1 equal to zero, we find thata12

5 b12 [ J12, so thatV, in this case, is the familiar bilinear
interactionJ12I1 z I2.

For N 5 d 5 3, say spins 1, 2, and 3, the interaction must be
of the form

a@~120! 2 ~210!# 1 b@~102! 2 ~201!#

1 c@~012! 2 ~021!# .

Setting the commutator withI1 equal to zero, we find thata 5
2b 5 c, so there is only one independent constant, which must
be pure imaginary for the interaction to be Hermitian. It fol-
lows that

V 5
1
2
iJ123@~120! 2 ~210! 1 ~201!

2 ~102! 1 ~012! 2 ~021!]

5 J123I 1 z I 2 3 I 3, [27]

whereJ123 is real. It will be observed that this interaction does
not contribute to the diagonal elements of*, confirming the
remarks made in the introduction regarding the properties of
the ABC system.

WhenN 5 d 5 4, similar calculations show that there are
three independent interactions:

1
2
J1234$~1200! 1 ~0012! 1 ~0021! 1 ~2100!

1
1
2
@~1212! 1 ~2112! 1 ~2121!

1 ~1221! 1 4~0000!]}

5 J1234~I 1 ? I 2!~I 3 ? I 4! , [28]
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1
2
J1324$~1020! 1 ~0102! 1 ~0201! 1 ~2010!

1
1
2
@~1122! 1 ~2112! 1 ~2211!

1 ~1221! 1 4~0000!]}

5 J1324~I 1 ? I 3!~I 2 ? I 4! , [29]

1
2
J1423$~1002! 1 ~0120! 1 ~0210! 1 ~2001!

1
1
2
@~1122! 1 ~1212! 1 ~2211!

1 ~2121! 1 4~0000!]}

5 J1432~I 1 ? I 4!~I 2 ? I 3! , [30]

where theJ’s are real constants. Other invariant interactions
with four spins are expressible in terms of [28], [29], and [30].
For example,I1 z [I2 3 (I3 3 I4)] 5 (I1 z I3)(I2 z I4) 2 (I1 z
I4)(I2 z I3). Quadrilinear interactions contribute to the diagonal
elements of* by virtue of the product operator (0000). For
spin 1

2
nuclei, this product would multiply each coupling con-

stant by a factor of1
16

, which could lead to a considerable
reduction in the contribution of a quadrilinear interaction to the
energy.

REDUCTION RELATIVE TO O AND O3
1

Although the preceding considerations, in principle, permit
the determination of all rotationally invariant interactions, the
algebra becomes increasingly arduous for larger values ofN.
The important conclusion that the interactions are multilinear
in the angular momentum components may be combined with
group theoretical considerations to provide further information
regarding the formal aspects of the problem, and considerable
simplification in the computations. In particular, we shall be
able to determine theexactnumber of independent invariants
for eachN.

We begin by abandoning the expression of the invariants in
terms of the1, 2, 0 operators in favor of their expression in
terms of the Cartesian components of the angular momenta. It
is also convenient to adopt a concise notation for the products
of angular momenta, writing, for example, whenN 5 d 5 5,
(xxyzx) for the Kronecker productI x1I x2I y3I z4I x5. In general,
there are 3N such products, all of which are Hermitian. We
shall first adapt these products to the symmetries of the proper
rotations of the octahedral groupO, supposing the origin at the
center of a cube, with the coordinate axes parallel its sides.
Under any rotation, the components of angular momenta trans-
form like vectors, and under the particular rotations of 120°
and 240° about the cube diagonal extending from the origin to
the vertex in the positive octant, thex, y, andz-components of
the angular momenta undergo cyclical permutations, so that,
for any N, the invariants also have this property, and must

therefore belong to the totally symmetric representationA1 of
the octahedral group, that is, each invariant spans a one-
dimensional subspace.

The 24 proper rotations of the octahedral group belong to
five classes:E, 8C3, 3C2, 6C4, 6C92. The character table for the
group is not required, as the characters for theA1 representa-
tion are all11. The characters of the representation generated
by the 3N product operators arex(E) 5 3N, x(C3) 5 0, x(C4)
5 1, for all N, x(C2) 5 x(C92) 5 1, for N even,21, for N odd.
With these results, a straightforward calculation shows that the
number of linear combinations of products transforming ac-
cording to the representationA1 of the octahedral group for
several values ofN is given in the following tabulation:

N 3N O O3
1

2 9 1 1
3 27 1 1
4 81 4 3
5 243 10 6
6 729 31 15
7 2187 91 36
8 6561 274 91
9 19,683 820 232

10 59,049 2,461 603

We can also reduce the product representation relative to the
three-dimensional pure rotation group,O3

1, whose irreducible
representations areDj, with j 5 0, 1, 2, . . . ,each of dimension
2j 1 1. Since the components of angular momenta transform like
vectors, the products under consideration form a basis forD1VD1

V D1 V . . . to N factors. Reducing this product into its irreducible
components, using the Clebsch–Gordan series, we determine the
number of times the one-dimensional representationD0 is con-
tained in the product for eachN. These numbers are given in the
last column of the preceding tabulation.

To illustrate the calculation, consider the caseN 5 d 5 4.
On applying the projection operator for theA1 representation of
O to the 81 product operators, the following linear combina-
tions of products transforming according to theA1 representa-
tion are obtained:

~ xxxx! 1 ~ yyyy! 1 ~ zzzz! , [31]

~xxyy! 1 ~yyzz! 1 ~zzxx! 1 ~xxzz! 1 ~zzyy! 1 ~yyzz!, [32]

~xyxy! 1 ~yzyz! 1 ~zxzx! 1 ~xzxz! 1 ~yxyx! 1 ~zyzy!, [33]

~xyyx! 1 ~yzzy! 1 ~zxxz! 1 ~xzzx! 1 ~yxxy! 1 ~zyyz!. [34]

Under reduction with respect toO3
1, however, there are only

three invariants. The reason is that reduction relative toO does
not take into accountall proper rotations. This means that after
expressingV as a linear combination of the preceding four
operators, we must evaluate additional commutators with, at
most, two ofIx, Iy, Iz. It turns out that only the commutator with
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Ix is required, and on setting the result equal to zero, it is found
the coefficient of [31] is equal to the sum of the coefficients of
[32]–[34], leading to the three scalar products given in Eqs.
[28]–[30]. It might be possible to avoid the evaluation of
additional commutators by reducing the products relative to the
proper rotations of the icosahedral group, but rotations about
fivefold axes, which mix the components of angular momenta,
would complicate the calculations.

WhenN 5 d 5 5, the reduction with respect toO3
1 gives six

as the number of independent invariants, and an explicit cal-
culation disclosesV as a linear combination of the following
independent invariants: (I1 z I2)(I3 z I4 3 I5), (I1 z I3)(I2 z I4 3
I5), (I1 z I4)(I2 z I3 3 I5), (I1 z I5)(I2 z I3 3 I4), (I2 z I3)(I1 z I4

3 I5), (I2 z I4)(I1 z I3 3 I5).
For N 5 d 5 6, similar calculations lead to 15 independent

invariants, as required under reduction relative to the pure
rotation group; all of these invariants can be expressed as
products of scalar products, such as (I1 z I2)(I3 z I4)(I5 z I6).

The preceding results parallel the theory of invariants under
the n-dimensional orthogonal group: every invariant of even
degree is expressible as a product of scalar products; every
invariant of odd degree is expressible as a scalar triple product
multiplied by scalar products (12).

TIME-REVERSAL INVARIANCE

Invariance with respect to time reversal leads to a reduction in
the number of coupling constants required in the high-resolution
Hamiltonian for a multispin system. For under time reversal
(13, 14), the components of angular momentum change sign, and
the constant external magnetic field has its direction reversed.
Assuming the Hamiltonian [3] is invariant under time reversal, the
invariants of odd degree must be omitted from the Hamiltonian—

provided the coupling constants associated with these invariants
are true scalars. Experimental evidence indicates that it is not
necessary to include terlinear interactions in systems containing
three or more spins, so that experimental investigations of multi-
linear interactions should begin with four-spin systems, and
among these, the simplest would be the AA9BB9 system, espe-
cially the limiting AA9XX9 system, as the frequency separations
of the resonances in the AA9 and XX9 regions are determined
entirely by the coupling constants.

THE AA*XX* SYSTEM

The spectrum of the AA9 region of the AA9XX 9 system (C2

symmetry) when quadrilinear interactions are included is given
in Tables 1 and 2, where

K6 5 JAA 9 6 JXX 9 , L6 5 JAX 6 JAX 9 ,

R 5 @~K1 2
1
2
JAA 9XX 9 1 L2

2 !2#
1
2, R9 5 @K2

2 1 L2
2 #1/ 2,

Q 5 2
L2

K1 2
1
2
JAA 9XX 9 1 R

,

Q9 5 2
L2

K2 1 R9
.

The spectrum reduces to the conventional AA9XX 9 system
(3, 6, 15) when all quadrilinear coupling constants vanish. In
particular, the first and second! transitions coalesce, as do the
third and fourth! transitions. As the predicted splitting of
these lines has not been reported, it may be concluded that for
known AA9XX 9 spectra either (JAXA 9X9 1 JAX 9A9X)/4 is neg-
ligibly small, or thatJAXA 9X9 and JAX 9A9X are comparable in
magnitude but of opposite sign. If we setJAXA 9X9 1 JAX 9A9X

equal to zero in Tables 1 and 2, we see that the spectrum is
formally the same as the conventional AA9XX 9 system, except
that K1 is replaced withK1 2 1

2
JAA 9XX 9. From this point of

view, the customary interpretations of AA9XX 9 systems have

TABLE 1
Resonance Frequencies and Relative Intensities

for the AA*XX* System: ! Transitions

Frequency Intensity

1. vA 1 1

2
L1 1 1

8
(JAXA 9X9 1 JAX 9A9X) 2

2. vA 1 1

2
L1 2 1

8
(JAXA 9X9 1 JAX 9A9X) 2

3. vA 2 1

2
L1 2 1

8
(JAXA 9X9 1 JAX 9A9X) 2

4. vA 2 1

2
L1 1 1

8
(JAXA 9X9 1 JAX 9A9X) 2

5. vA 2 1

2
K1 1 1

8
(2JAA 9XX 9 1 JAXA 9X9 1 JAX 9A9X) 1 1

2
R

2

1 1 Q2

6. vA 2 1

2
K1 1 1

8
(2JAA 9XX 9 1 JAXA 9X9 1 JAX 9A9X) 2 1

2
R

2Q2

1 1 Q2

7. vA 1 1

2
K1 2 1

8
(2JAA 9XX 9 1 JAXA 9X9 1 JAX 9A9X) 1 1

2
R

2Q2

1 1 Q2

8. vA 1 1

2
K1 2 1

8
(2JAA 9XX 9 1 JAXA 9X9 1 JAX 9A9X) 2 1

2
R

2

1 1 Q2

TABLE 2
Resonance Frequencies and Relative Intensities

for the AA*XX* System: @ Transitions

Frequency Intentity

1. vA 1 1

2
K2 2 1

8
(JAXA 9X9 1 JAX 9A9X) 2 1

2
R9

2

1 1 Q92

2. vA 1 1

2
K2 2 1

8
(JAXA 9X9 1 JAX 9A9X) 1 1

2
R9

2Q92

1 1 Q92

3. vA 2 1

2
K2 1 1

8
(JAXA 9X9 1 JAX 9A9X) 2 1

2
R9

2Q92

1 1 Q92

4. vA 2 1

2
K2 1 1

8
(JAXA 9X9 1 JAX 9A9X) 1 1

2
R9

2

1 1 Q92
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tacetly assumed thatJAA 9XX 9 is zero. For example, Smith and
Ihrig (16) have studied 1,1-difluoroethylene in dimethyl sul-
foxide, and from their data (17),

|JHH9 1 JFF9 2
1
2
JHH9FF9 | 5 30.45 Hz,

|JHH9 2 JFF9 | 5 41.20 Hz.

Removing the signs of absolute value, we find the following
values (in hertz):

JHH9 5 25.371
1
4
JHH9FF9 ,

JFF9 5 35.821
1
4
JHH9FF9 ,

which reduce to the values of Smith and Ihrig forJHH9 andJFF9

whenJHH9FF9 5 0. The analysis of Smith and Ihrig is in excellent
agreement with the experimental data, but the fit would be unal-
tered by assigninganyvalue, positive or negative, toJHH9FF9, as
the values of |K1| and |K2| would also be unaltered.

It would appear that the question of multilinear interactions
could be settled by theoretical calculations of multilinear cou-
pling constants, by the examination of AA9XX 9 spectra in
cases where the bilinear couplings constants are large, looking
in particular for a splitting or unusual broadening of the nor-
mally coalesced! transitions, or by experimental methods
designed to detect small coupling constants.
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